NGA-West2 Research Program

Yousef Bozorgnia, Ph.D., P.E.

Executive Director,
Pacific Earthquake Engineering
Research Center (PEER),
University of California, Berkeley

NGA-West1

NGA-West1 (Original NGA Project)

- PEER compiled a very comprehensive database of ground motions recorded in shallow crustal earthquakes in active tectonic regions
- Numerous supporting research studies were also carried out
- In 2008, Next Generation Attenuation (NGA) ground motion prediction equations (GMPEs) were developed
- USGS adopted the NGA-West1 GMPEs for the US National Seismic Hazard Maps
- NGA-West2 is a follow-up of NGA-West

Sponsors of NGA-West2

Supports of the sponsors are appreciated

NGA-West2 Sub-Projects

Update worldwide database

Closest Distance to Rupture (km)

Update worldwide database

Update worldwide database

From NGA-West1 to NGA-West2 the size of database was increased by a factor of 5.5

Moderate-to-large magnitude worldwide database

Moderate-to-large magnitude worldwide database

Examples of data added to NGA-West2 database

Earthquake Name*	Year	M	N Rec	Rrup Range (km)
Tottori, Japan	2000	6.61	414	1-333
Niigata, Japan	2004	6.63	530	8-300
Chuetsu-oki, Japan	2007	6.8	616	10-300
Iwate, Japan	2008	6.9	367	5-280
El Mayor-Cucapah, CA	2010	7.2	238	11-240
Darfield, New Zealand	2010	7	114	1-540
Christchurch, New Zealand	2011	6.1	104	2-440
Wenchuan, China	2008	7.9	263	1-1500
L'Aquila, Italy	2009	6.3	48	5-230

^{*}subset of added events

Comparison of NGA-West1 & NGA-West2 databases

Data Set	# EQs	# Rec	Sa Type	Damping	Periods (sec)
NGA- West1	173	3,551	AR, GMRotl50	5%	0.01 - 10
NGA- West2	610	19,400	AR, (RotDnn)	(0.5-30%)	(0.01 - 20)

AR= As-recorded

RotDnn definition

- At each period, rotate horiz. components,
- RotD**50** = 50 percentile,
- RotD100 = max,
- RotD00 = min
- Motivation: Users can use the maximum rotated motion

NGA-West2 Distribution of Hypo Depth in the Database

Courtesy: Tim Ancheta

Vs30 distribution

 Measurements versus inferred values (estimated by various methods such as slop, geology,...)

Courtesy: Jon Stewart

Why did we add small magnitude data?

Motivation:

- NGA-West1 models over-predicted motions for small magnitude
- In the future, we can analyze multiple events recorded at same site to characterize the site variability (singlestation Sigma)
- In the regions that have mainly small magnitude data, they can compare NGA with their data

Magnitude scaling at small magnitude

Update NGA GMPEs for horizontal motion

- Using the latest database
- Using supporting research on:
 - Directivity of ground motion
 - HW/FW model using simulations data
 - Update of nonlinear soil response
 - New classification of "main shock" vs "aftershocks"

...

Model Parameters

Parameter	AS	BSSA	СВ	CY	Id
Magnitude	Mw	Mw	Mw	Mw	Mw
Top of Rupture	Z_{tor}		Z_{tor}	Z_{tor}	
Style of Faulting	RV,NM,S S	RV,NM, SS	RV,NM, SS	RV,NM, SS	RV,NM, SS
Dip	Yes		Yes	Yes	
Downdip Fault Width	Yes		Yes		
Closest Distance to Rupture	R_{rup}		R_{rup}	R_{rup}	R_{rup}
Hor Dist. to Surface Proj.	R_{jb}	R_{jb}	R_{jb}	R_{jb}	
Hor Dist. perpendicular to Strike	R_x , R_y		R_x	R_x	
Hanging Wall Model	Yes	(R _{jb})	Yes	Yes	
Vs30m	Vs30	(760m/ s)	Vs30, (S _j)	Vs30	Vs30 <u>></u> 4 50
Depth to Vs	Z _{1.0}		Z _{2.5}	Z _{1.0}	
Hypocentral Depth			H_{hyp}		
Vs30m for Reference Rock	1100	760	1100	1130	

Courtesy: Nick Gregor

Develop GMPEs for vertical component

- NGA-West1
 models
 predicted only
 horizontal
 ground motions
- Recorded data have shown that vertical ground motion can be large at the sites close to active faults

Do not use 2/3 to scale horizontal motion to get vertical

Damping scaling of response spectra

Scale GMPEs for damping other than 5%:

0.5% to **30%**

 Damping scaling model is final;
 PEER report already published

Directivity

- NGA-West1 models did not explicitly include directivity of ground motion
- Five directivity models have been developed
 - Wide-band and narrow-band models
- Effects of directivity will be included in NGA-West2 GMPEs

Directionality (Polarization)

- NGA models are for "geometric mean" horizontal components
- Develop max and min rotated spectra, as a function of mag, distance,...
- Examine relationship of max/min spectra with RotD50 (50 percentile) spectra

Ref: Boore (2010)

Epistemic uncertainty model

- Develop epistemic uncertainty model for NGA-West2
- Will need final GMPEs
- Will be carried out by January 31, 2013

Site Response

- NGA-West1 site amplification factors are inconsistent with NEHRP site amplification factors
- Goal: To make NEHRP and NGA site amplifications consistent
 - Propose changes in NEHRP factors
- This is both scientific and consensusbuilding task

NGA-West2 Status

- Some tasks have already been completed
 - Databases, damping scaling, directivity, directionality, site response
 - Draft final reports are being reviewed internally and externally
- Draft of GMPEs for horizontal components are ready for review to obtain:
 - Feedback from the USGS National Hazard Maps, internal and external reviewers

NGA-West2 Status (cont'd)

- Draft final reports on horizontal and vertical GMPEs and epistemic uncertainty will be sent to the sponsors and reviewers by January 31, 2012
- Obtain comments on draft report: February 28, 2013
- Finalize all reports for public release:
 April 15, 2013

Many people have been involved in NGA-West2

Technical Coordination Committee:

- Abrahamson, Bozorgnia, Campbell
- External reviewers and oversight committee:
 - Chris Wills, Mark Petersen, John Anderson, Roger Borcherdt, Silvia Mazzoni, Farzad Naeim
- Funding agencies representatives:
 - Badie Rowshandel & Tom Shantz

People involved in NGA-West2 per Tasks

- Database: Ancheta, Darragh, Chiou, Silva,
 Stewart, Seyhan, Graves, Wooddell, Katke, Boore,
 Kishida, Al Atik, NGA developers
- GMPE Developers:
 - Abrahamson & Silva
 - Campbell & Bozorgnia
 - Chiou & Youngs
 - Boore-Stewart-Seyhan-Atkinson
 - Idriss
- Damping: Rezaeian, Bozorgnia, Idriss,
 Abrahamson, Campbell, Silva & GMPE developers

People involved in NGA-West2 per Tasks (Cont'd)

- Vertical: GMPE developers
- Directivity: Spudich, Chiou, Baker, Shahi, Rowshandel, Somerville, Bayless, Watson-Lamprey & GMPE developers
- Directionality: Baker, Shahi, & directivity group
- Site Response: Stewart, Seyhan, Anderson, Borcherdt, Crouse, Graves, Idriss, Power, Silva, Shantz

Putting together pieces of a complicated puzzle through a large coordinated multidisciplinary Team Work

THANK YOU!

